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Abstract. We introduce a notion of strong algebrability of subsets

of linear algebras. Our main results are the following. The set of all

sequences from c0 which are not summable with any power is densely

strongly c–algebrable. The set of all sequences in l∞ whose sets of limit

points are homeomorphic to the Cantor set is comeager and strongly c-

algebrable. The set of all non-measurable functions from RR is strongly

2c–algebrable. These results complete several ones by other authors,

within the modern context of lineability.

1. introduction

Assume that B is a linear algebra, that is, a linear space being also an

algebra. According to [4], a subset E ⊂ B is called algebrable whenever

E ∪ {0} contains an infinitely generated algebra. And if κ is a cardinal, E

is said to be a κ–algebrable if E ∪ {0} contains an algebra generated by an

algebraically independent set with cardinality κ. Hence algebrability equals

ω-algebrability, where ω denotes the cardinality of the set N of positive

integers. In addition to algebrability, there exist other related properties

such as lineability, dense-lineability and spaceability, see [3], [8], [9] and [14].

In this note we will focus on algebrability. This notion was considered

by many authors. For instance Aron, Pérez-Garćıa and Seoane-Sepúlveda

proved in [4] that the set of non-convergent Fourier series is algebrable.

Aron and Seoane-Sepúlveda established in [5] algebrability of everywhere
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surjective functions on C, which was strengthened in [2]. Other algebrability

results can be found in [11] and [12]. Here we will discuss some strengthening

of the notion of algebrability.

For a cardinal κ, we say that A is a κ-generated free algebra, if there

exists a subset X = {xα : α < κ} of A such that any function f from X

to some algebra A′, can be uniquely extended to a homomorphism from A

into A′. Then X is called a set of free generators of the algebra A. A subset

X = {xα : α < κ} of a commutative algebra B generates a free sub-algebra

A if and only if for each polynomial P and any xα1 , xα2 , ..., xαn we have

P (xα1 , xα2 , ..., xαn) = 0 if and only if P = 0.

This leads us to the following definition. We say that a subset E of a

commutative linear algebra B is strongly κ–algebrable, if there exists a κ-

generated free algebra A contained in E∪{0}. If additionally, B is equipped

with some topological structure and A is dense in B, then we say that E is

densely strongly κ–algebrable.

Note that X = {xα : α < κ} ⊂ E is a set of free generators of a free

algebra A ⊂ E if and only if the set X̃ of elements of the form xk1α1
xk2α2
· · ·xknαn

is linearly independent and all linear combinations of elements from X̃ are

in E∪{0}. (In particular, it follows that sets considered in [7] were strongly

algebrable.) It easy to see that free algebras have no divisors of zero.

In general, there are subsets of linear algebras which are algebrable but

not strongly algebrable. Let c00 be a subset of c0 consisting of all sequences

with real terms equal to zero from some place. Having members x1, ..., xn

of some linear algebra and a polynomial P , an element P (x1, ..., xn) will be

called an algebraic combination of x1, ..., xn.

Proposition 1. The set c00 is algebrable in c0 but is not strongly 1–algebrable.

Proof. Note that c00 is a linear sub-algebra of c0 which can be generated

by a linearly independent set of cardinality ω, namely, by {e1, e2, ...} where

ei is a sequence consisting of 1 on the i-th coordinate and zeros on the
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remaining coordinates. Note also that c00 cannot be generated by finitely

many elements, since any linear (or algebraic) combination of finitely many

elements from c00 eventually equals zero.

Suppose that c00 is strongly 1–algebrable, i.e. there is a sequence a ∈

c00 which is algebraically independent. In particular, it means that the

collection {a, a2, a3, ...} is linearly independent. Since a ∈ c00, there is n ∈ N

such that a(k) = 0 for k ≥ n. Moreover am(k) = 0 for all k ≥ n and

m ∈ N. Note that the linear space generated by a, a2, a3, ... is isomorphic

to a linear subspace of Rn and restriction vectors a�n, a
2
�n, a

3
�n, ... are linearly

independent in Rn. A contradiction. �

The aim of this note is to prove strong c–algebrability of some sets of se-

quences and functions, where c denotes cardinality of the continuum. These

are: the set of all sequences tending to zero which are not summable with

any power, the set of non-measurable functions, and the set of bounded real

sequences whose set of accumulation points is of measure zero and can be

decomposed into a finite set and a set homeomorphic to the Cantor set. This

last set happens to be co-meager.

2. algebrability in c0 and l∞

To prove the following Theorem 2 we will use the idea from the paper [7].

Our theorem is related to [10, Theorem 1.3], from which the spaceability of

c0 \
⋃
{lp : p ≥ 1} is extracted as a consequence. Recall that a subset E of

a topological vector space X is called spaceable if E ∪ {0} contains a closed

infinite dimensional subspace of X.

Theorem 2. The set c0 \
⋃
{lp : p ≥ 1} is densely strongly c–algebrable in

c0.

Proof. Let {rα : α < c} be a linearly independent (with respect to the field

Q) subset of positive reals containing 1. Let A be a linear algebra generated
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by the set

S =

{(
1

lnrα(n+ 1)

)∞
n=1

: α < c

}
.

We will show that any non-trivial algebraic combination of elements from S

is either a null sequence or it is not summable with any power. To prove this,

we need to show that, for every matrix (kil : i ≤ m, l ≤ j) of non-negative

integers with non-zero and distinct rows, and any β1, ..., βm ∈ R which do

not vanish simultaneously, the series

(1)
∞∑
n=1

(
β1

1

lnk11rα1+...+k1jrαj (n+ 1)
+ ...+ βm

1

lnkm1rα1+...+kmjrαj (n+ 1)

)
is not summable with any power. Note that the sequence

(2)

(
1

lnk11rα1+...+k1jrαj (n+ 1)

)
n∈N

tends to zero, i.e. it is in c0. We need to prove that the series (1) is

divergent. Since the set {rα : α < c} is linearly independent, the numbers

k11rα1 + ... + k1jrαj ,..., km1rα1 + ... + kmjrαj are distinct. To simplify the

notation, put ki := ki1rα1 +...+kijrαj for every i = 1, ...,m. We may assume

that k1 < k2 < ... < km and β1 6= 0. Since lnki (n+1)

lnk1 (n+1)
→ ∞ (n → ∞) for all

i = 2, ...,m, we obtain that there is N such that

(3)∣∣∣∣β1
1

lnk1(n+ 1)
+ β2

1

lnk2(n+ 1)
+ ...+ βm

1

lnkm(n+ 1)

∣∣∣∣ ≥ |β1|
2 lnk1(n+ 1)

for all n ≥ N . Since
(

1
lnq(n+1)

)∞
n=1

/∈ lp for any p ≥ 1 and q > 0, the result

follows.

Now, we prove that A is dense in c0. Consider the sub-algebra A1 of

space c (of all convergent sequences with the sup-norm), generated by two

elements:
(

1
ln(n+1)

)∞
n=1

and 1 = (1, 1, 1, ...). Let A2 be a sub-algebra of A

generated by
(

1
ln(n+1)

)∞
n=1

. Note that A1 = {x+(a, a, a, ...) : x ∈ A2, a ∈ R}.

Equip the set of positive integers N with the discrete topology and let αN be

a one-point compactification of N. Note that c is isometrically isomorphic
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to the space C(αN) of all continuous real functions on αN with the sup-

norm. Since
(

1
ln(n+1)

)∞
n=1

is strictly decreasing sequence of positive numbers

tending to zero, then it separates the points of αN. Therefore by the Stone-

Weierstrass theorem, the algebra A1 is dense in c.

Take any x ∈ c0 and ε > 0. There is y ∈ A1 with ||x − y|| < ε/2. Note

that | limn y(n)| ≤ ε/2. Put ŷ = (y(1) − limn y(n), y(2) − limn y(n), y(3) −

limn y(n), ...) ∈ c0. Then ||x − ŷ|| < ε. Since ŷ ∈ A2 ⊂ A, we obtain that

A2, and therefore A, is dense in c0. �

In the sequel we will need the following observation. Let S be a set

defined in the proof of Theorem 2. Let S = {aα : α < c} and let (nk) be any

increasing sequence of natural numbers. Then S′ := {(aα(nk))k∈N : α < c}

is also a set of free generators in c0. This easily follows from (3).

In [1] it was proved that the set E of all sequences from l∞ which are

not convergent is c-lineable, i.e. there is a linear c-dimensional subspace of

l∞ which every non-zero element is divergent. This part is devoted to some

strengthening of this result to obtain a theorem on algebrability.

We say that a function f : R → R fulfils (N) Luzin condition if the

images of null sets are null (i.e. of Lebesque measure zero). Note that all

polynomials satisfy (N) Luzin condition and are finite-to-one.

Lemma 3. Let f : R→ R be a finite-to-one continuous function satisfying

(N) Luzin condition. Then the image f(C) of any compact perfect zero-

dimensional set C is also compact perfect and zero-dimensional.

Proof. Let x ∈ f(C), y ∈ f−1({x}) and take yn → y with yn 6= y and

yn ∈ C for all n. Then the sequence (f(yn)) tends to x, and it contains a

subsequence all of whose elements are distinct from x. Therefore f(C) is

dense-in-itself. Clearly it is compact and thus f(C) is perfect. Since f(C)

is null, it is also zero-dimensional. �

For a sequence x ∈ RN let LIM(x) stands for the set of all limit points

of x, i.e. LIM(x) = {y ∈ R : x(nk) → y for some (nk)}. Clearly if x ∈ l∞,
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then LIM(x) is nonempty. Note that x ∈ l∞ is convergent if and only if

LIM(x) is a singleton. In general, LIM(x) is a nonempty compact subset of

R. On the other hand if C is a non-empty compact subset of reals, then

there is a decomposition of C into a perfect set P ⊂ C (which can be empty)

and a countable set D ⊂ C (this is the famous Cantor–Bendixson theorem).

Now, taking (xn) such that each point of D appears in (xn) infinitely many

times, and the set of remaining points of (xn) is dense in P , we obtain

LIM(x) = C. Let ECantor = {x ∈ l∞ : LIM(x) is the union of a finite set

and a set homeomorphic to the Cantor set}.

Let A1, A2, ... be a partition of the set of even numbers in N into infinite

sets. Let Bi = Ai ∪ {2i − 1}. Then clearly B1, B2, ... is a partition of N.

Let x ∈ l∞ be the characteristic function of even numbers. Then LIM(x) =

{0, 1} and
⋃∞
n=1 LIM(x�Bn) = {1}. Therefore one cannot have the equality

LIM(x) = cl(
⋃∞
n=1 LIM(x�Bn)) for any partition B1, B2, .... However, we

easily obtain the following.

Lemma 4. Assume that {x(n) : n ∈ N} ⊂ cl(
⋃∞
n=1 LIM(x�Bn)). Then

LIM(x) = cl(
⋃∞
n=1 LIM(x�Bn)).

A family F of infinite subsets of N is called almost disjoint if A \ B is

finite for every A,B ∈ F . It is well-known that there is an almost disjoint

family of cardinality c. The classical Brouwer theorem states that a subset

of R is homeomorphic to the Cantor set if and only if it is compact, dense-in-

itself and zero-dimensional (cf. [15, Theorem 7.4]). Note also that a meager

compact set is zero-dimensional.

Theorem 5. ECantor is strongly c–algebrable.

Proof. Let {aα : α < c} be a set of free generators of the algebra defined

in the proof of Theorem 2. Let C be the Cantor set. Let N1, N2, ... be a

partition of N into infinitely many infinite sets. Let {F iα : α < c} be an

almost disjoint family of subsets of Ni. For α < c define xα(n) = aα(i) if
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n ∈ Ni\F iα, and define xα on F iα such that cl
(
{xα(n) : n ∈ F iα}

)
= aα(i)+C.

Now let A be the algebra generated by {xα : α < c}.

Fix x ∈ A \ {0}. Then there exist α1 < α2 < ... < αm < c as well as a

non-trivial polynomial P of m variables with non-zero real coefficients such

that x = P (xα1 , xα2 , ..., xαm). Note that P (aα1(i), aα2(i), ..., aαm(i)) 6= 0 for

all but finitely many i ∈ N, and

lim
i→∞

P (aα1(i), aα2(i), ..., aαm(i)) = 0

Fix i ∈ N and j ∈ {1, ...,m}. Since {F iα : α < c} is almost disjoint,

there is M ∈ N such that (F iαj \ {1, ...,M}) ∩
⋃
k 6=j F

i
αk

= ∅. Hence for

each k 6= j we have xαk(n) = aαk(i) for any n ∈ F iαj \ {1, ...,M}. Moreover

LIM((xαj )�F iαj \{1,...,M}
) = aαj (i) + C. If n ∈ Ni \

⋃m
k=1 F

i
αk

, then xαk(n) =

aαk(i). Consequently

LIM(x�F iαj \{1,...,M}
) = LIM(x�F iαj

) = Cij ,

where

Cij = P ({aα1(i)}×...×{aαj−1(i)}×(aαj (i)+C)×{aαj+1(i)}×...×{aαm(i)}).

Therefore by Lemma 4 we have

(4) LIM(x) = cl

 ∞⋃
i=1

m⋃
j=1

Cij

 .

Now, by Lemma 3 the set Cij is homeomorphic to the Cantor set (and there-

fore of measure zero) if and only if the function fij define by the formula

fij = P (aα1(i), ..., aαj−1(i), t, aαj+1(i), ..., aαm(i)) is not constant. If fij is

constant, then Cij = {P (aα1(i), ..., aαm(i))} is a singleton.

Claim. For all but finitely many i’s there exists j such that Cij is homeo-

morphic to the Cantor set.

Proof of Claim. Suppose to the contrary, that there are infinitely many

i1 < i2 < ... such that for each j every function fikj is constant. By the

observation we did after Theorem 2, S′ = {(aα(ik))k∈N : α < c} is a set of
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free generators. Note that the derivative f ′ikj equals zero. Since each partial

derivative Pj of polynomial P is also a polynomial and S′ forms a set of free

generators, then Pj equals zero. Therefore P is constant. But P does not

have a constant term. Hence P equals zero, which is a contradiction. This

proves the claim.

The closure of a null set is not necessary null. Hence we need to specify

what exactly we add in the closure of the set on the right side of equation

(4). Take any convergent sequence (xn) from

∞⋃
i=1

m⋃
j=1

Cij .

Let x0 = limn xn. Without loss of generality we may assume that all ele-

ments of the sequence are in
⋃∞
i=1Ci1. If there is n0 such that all elements

of the sequence are in
⋃n0
i=1Ci1, so is x0. Therefore we may assume that

there is an increasing sequence of indices (kn) with

xn ∈ P ((aα1(kn) + C)× {aα2(kn)} × ...× {aαm(kn)}).

Thus there is a sequence (yn) of elements of C such that

xn = P (aα1(kn) + yn, aα2(kn), ..., aαm(kn)).

Since C is compact, we may assume that yn tends to some y ∈ C. Since

aαi ∈ c0, then

x0 = P (y, 0, ..., 0) ∈ P (C × {(0, ..., 0)}).

Hence

cl

 ∞⋃
i=1

m⋃
j=1

Cij

 =
∞⋃
i=0

m⋃
j=1

Cij ,

where we put aαi(0) = 0. Thus by (4) the set of limit points LIM(x) is a

countable union of null sets. Since it is compact, it is also zero-dimensional.

Note that for fixed i the intersection Ci1 ∩ ...∩Cim is non-empty, namely it

contains P (aα1(i), ..., aαm(i)). Therefore by the Claim, all but finitely many

sets of the form
⋃m
j=1Cij are homeomorphic to the Cantor set. Therefore
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LIM(x) is the union of a finite set and a countable union of sets homeo-

morphic to the Cantor set. If we remove from LIM(x) all its isolated points

(there are finitely many of them), then the remaining part is the union of

dense-in-itself sets, and therefore, as a dense-in-itself, zero-dimensional and

compact set, it is homeomorphic to the Cantor set. To sum up, x ∈ ECantor,

as required. �

By B(x, ε) we denote the closed ball with the radius ε > 0 centred at the

point x. For A ⊂ l∞ put LIM(A) =
⋃
{LIM(x) : x ∈ A}.

Lemma 6. Let B1 ⊃ B2 ⊃ B3 ⊃ ... be a sequence of closed balls in l∞

such that the corresponding sequence of their radii tends to zero. Then

LIM(
⋂
nBn) =

⋂
n LIM(Bn).

Proof. The inclusion ⊂ is trivial. As for the converse, suppose that a ∈⋂
n LIM(Bn). There is xn ∈ Bn and mn

1 < mn
2 < ... with limk xn(mn

k) = a.

Since the sequence of diameters of Bn’s tends to zero, (xn) is a Cauchy

sequence in l∞. Let x = limn xn. We will show that a ∈ LIM(x) ⊂

LIM(
⋂
nBn).

Suppose to the contrary that there is ε > 0 and a positive integer m such

that |x(k) − a| ≥ ε for any k ≥ m. By hypothesis, there is n0 such that

diam(Bn) < ε/2 for n ≥ n0. But a ∈ LIM(xn) for any n; therefore for fixed

n ≥ n0 we have |xn(k) − a| < ε/2 for infinitely many k’s. Hence for each

fixed n ≥ n0 there are infinitely many k with

|xn(k)− x(k)| ≥ |x(k)− a| − |xn(k)− a| ≥ ε− ε/2 = ε/2.

But this contradicts the fact that xn tends to x in l∞. �

The Banach-Mazur game is an infinite topological game. Fix a topological

space X and a subset A of it. Two players play open sets: player I starts

with some nonempty open subset U1, player II responses with an open subset

V1 of U1, then player I takes some open U2 ⊂ V1, and player II responses

with an open subset V2 of U2, etc. The second player wins if ∅ 6=
⋂
n Vn ⊂ A.
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The Banach-Mazur theorem states that player II has a winning strategy in

this game if and only if A is co-meager in X, cf. [15, Theorem 8.33] and [16,

Chap. 6].

Let Efinite = {x ∈ l∞ : {x(n) : n ∈ N} is finite}. It is clear that Efinite is

a dense c-generated algebra.

Theorem 7. The set ECantor is co-meager in l∞.

Proof. To prove the co-meagerness of ECantor we will apply the Banach-

Mazur game. We need to define a winning strategy for player II.

Player I plays an arbitrary nonempty open set U1 ⊂ l∞. There is x1 ∈ l∞

and ε > 0 with B(x1, ε) ⊂ U1. Observe that we may assume that x1 ∈ Efinite

and LIM(x1) is not a singleton.

Let LIM(x1) = {a1,1 < a1,2 < ... < a1,n1}. Let ε1 <
1
4 min{a1,i − a1,i−1 :

i = 2, ..., n1} and 0 < ε1 < ε/2. Then

B(x1, ε1) ⊂ B(x1, ε) ⊂ U1.

Note that LIM(B(x1, ε1)) equals to the disjoint union of intervals [a1,i −

ε1, a1,i + ε1]. Player II plays V1 := B(x1, ε1) ⊂ U1. Additionally define

N1,i = {n : x1(n) = a1,i}.

Player I plays an arbitrary nonempty open set U2 ⊂ V1. There is x2 ∈ l∞

and ε > 0 with B(x2, ε) ⊂ U2. We may assume that x2 ∈ Efinite and that

each LIM((x2)�N1,i) is not a singleton (i = 1, ..., n1).

Let LIM(x2) = {a2,1 < a2,2 < ... < a2,n2}. Let ε2 <
1
4 min{a2,i − a2,i−1 :

i = 2, ..., n2} and 0 < ε2 < ε1/2. Then

B(x2, ε2) ⊂ B(x2, ε) ⊂ U2.

Note that LIM(B(x2, ε2)) equals to the disjoint union of intervals [a2,i −

ε2, a2,i + ε2]. Player II plays V2 := B(x2, ε2) ⊂ U2. Additionally define

N2,i = {n : x2(n) = a2,i}, etc.

Note that the closure of Vn+1 is contained in Vn. Since l∞ is complete

and εn → 0,
⋂
n Vn is nonempty and, in fact, it reduces to a point, say x0.
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Moreover in every step n of the game each subinterval of LIM(Vn) is split

into at least two but finitely many subintervals of LIM(Vn+1) and the set

LIM(Vn+1) is a union of finitely many compact intervals. Hence
⋂
n LIM(Vn)

is homeomorphic to the Cantor set. By Lemma 6 the set LIM(
⋂
n Vn) =

LIM(x0) is homeomorphic to the Cantor set, and therefore ECantor is a co-

meager subset of l∞. �

The above results lead us to the following natural questions.

Problem 8. 1. Is ECantor densely algebrable in l∞?

2. Does ECantor ∪ {0} contain a co-meager algebra?

3. Is the set {x ∈ l∞ : LIM(x) is homeomorphic to Cantor set}, c–

algebrable?

At the end of this section we will show an example of spaceable set in l∞,

which is even not 1-algebrable. By E ⊂ l∞ denote the set of all sequences

which do not attain their supremum. Gurariy and Quarta have shown in

[14] that E is spaceable.

Theorem 9. E is not 1-algebrable.

Proof. Suppose to the contrary that E ∪ {0} contains a non-trivial algebra.

Then there is x ∈ E such that any linear combination of x, x2, x3, ... is

either in E or equals 0. Note that x2 ∈ E. Let a = supn x
2(n) > 0.

Then supn a
−1x2(n) = 1 and infn a

−1x2(n) ≥ 0. Consider the following

polynomial of one variable

P (t) = 2t3 − 3a−1x2(1)t2.

It is easy to see that P attains its supremum on the unit interval [0, 1] at

the point a−1x2(1). Therefore the sequence P (a−1x2) attains its supremum

at P (a−1x2)(1). �
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3. non-measurable functions

The simplest way to get a non-measurable function is to take a charac-

teristic function of a non-measurable set. The most common way to get a

non-measurable set is to use the Vitali or the Bernstein constructions. A

set B ⊂ R is called a Bernstein set provided that B ∩P 6= ∅ and Bc ∩P 6= ∅

for any perfect subset P of the real line.

Suppose that {Bα < c} is a decomposition of R into c pairwise disjoint

Bernstein sets. Let S $ c. Then B :=
⋃
α∈S Bα is also a Bernstein set.

To see this, fix α ∈ S and β ∈ c \ S. Then Bα and Bβ have nonempty

intersections with every perfect set P , and consequently their supersets B

and Bc, respectively, also satisfy the same condition. Using this observation

and [13, Theorem 2.2] we obtain that the set of all non-measurable functions

in RR is 2c–lineable. Note that there exists a function F : R→ R such that

F−1({x}) is a Bernstein set for every x ∈ R.

For any set X we can consider XR as a linear algebra under pointwise

addition and product. We say that a family {As : s ∈ S} of subsets of

X is independent if for any distinct s1, s2, ..., sn ∈ S and any εi ∈ {−1, 1}

for i = 1, ..., n the set Aε1s1 ∩ ... ∩ A
εn
sn is nonempty, where B1 = B and

B−1 = X \B for any B ⊂ X. Note that for any set of cardinality κ there is

an independent family of cardinality 2κ (see [6]).

Lemma 10. Let A be a commutative algebra with a unity. Let x ∈ A

be a free generator and let P 6= 0 be a polynomial of n variables with-

out non-zero constant term. Then at least one of elements P (x, 1, ..., 1),

P (1, x, 1, ..., 1),...,P (1, ..., 1, x) is non-zero.

Proof. Let P be a non-zero polynomial of the form

P (t1, ..., tn) = β1t
k11
1 · tk122 · · · tk1nn + ...+ βmt

km1
1 · tkm2

2 · · · tkmnn

where β1, ..., βm do not vanish simultaneously and the matrix (kij : i ≤

m, j ≤ n) consists of non-negative integers with non-zero and distinct rows.
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Suppose that each of P (x, 1, ..., 1), P (1, x, 1, ..., 1), ..., P (1, ..., 1, x) is zero.

Then

β1x
k11 + ...+ βmx

km1 = 0.

Since x is a free generator, then k11 = k21 = ... = km1 and β1 + ...+βm = 0.

Similarly we obtain k1j = k2j = ... = kmj for every j. Therefore each row of

(kij : i ≤ m, j ≤ n) equals to (k11, ..., k1n), a contradiction. �

Theorem 11. Let X be a set of cardinality κ. Then the set of all functions

from RX which are not constant is strongly 2κ-algebrable.

Proof. We may assume that X is of the form Y ×N with Y of cardinality κ.

Let {Aα : α < 2κ} be an independent family of subsets of Y . For any α < 2κ

define fα : Y × N → R in the following way. If x /∈ Aα, put fα(x, n) = 1

for any n ∈ N. If x ∈ Aα, put fα(x, n) = 1
ln(n+1) . We will show that

{fα : α < 2κ} is a free system of generators of an algebra.

Take any α1 < α2 < ... < αn < 2κ and any nonzero polynomial P

without free term. Consider a function f := P (fα1 , ..., fαn). Note that f on

(A1
α1
∩ A−1

α2
∩ ... ∩ A−1

αn ) × N is equal to P (fα1 , 1, ..., 1). As it was shown in

the proof of Theorem 2, the sequence
(

1
ln(n+1)

)∞
n=1

is a free generator of an

algebra in c0. Therefore by Lemma 10 we may assume that f is non-constant

on the non-empty set (A1
α1
∩A−1

α2
∩ ... ∩A−1

αn )× N. The result follows. �

Finally, by E ⊂ RR we denote the set of all functions f : R → R such

that f−1({x}) is either an empty set or a Bernstein set for any x ∈ R. Note

that any function from E is Lebesgue non-measurable and has not the Baire

property.

Theorem 12. The set E is strongly 2c–algebrable.

Proof. Let F : R → R be a function such that F−1({t}) is a Bernstein set

for any t ∈ R. Let {fα : α < 2c} be a set of free generators in RX given in

Theorem 11. The family {fα◦F : α < 2c} generates a free algebra contained

in E ∪ {0}. �



14 ARTUR BARTOSZEWICZ AND SZYMON G LA̧B

Acknowledgement. The authors are indebted to the referee for sug-

gesting several references, and for helpful comments and suggestions that

improved the text. The authors have been supported by the Polish Ministry

of Science and Higher Education Grant No. N N201 414939 (2010-2013).

References
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[6] B. Balcar and F. Franěk, Independent families in complete Boolean algebras, Trans.

Amer. Math. Soc. 274 (1982), no. 2, 607–618.

[7] A. Bartoszewicz, S. G la̧b and T. Poreda, On algebrability of nonabsolutely conver-

gent series, Linear Algebra Appl. 435 (2011), no. 5, 1025–1028

[8] F. Bayart, Topological and algebraic genericity of divergence and universality, Stu-

dia. Math. 167 (2005), 161–181.

[9] L. Bernal–González, Dense-lineability in spaces of continuous functions, Proc.

Amer. Math. Soc. 136 (2008), 3163–3169.

[10] G. Botelho, D. Diniz, V. V. Favaro and D. Pellegrino, Spaceability in Banach and

quasi-Banach sequence spaces, Linear Algebra Appl. 434 (2011), 1255–1260.

[11] F. J. Garćıa-Pacheco, M. Mart́ın and J. B. Seoane-Sepúlveda, Lineability, space-

ability, and algebrability of certain subsets of function spaces, Taiwanese J. Math.

13 (2009), no. 4, 1257–1269.
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